Constructing pairs of equienergetic and non-cospectral graphs

نویسندگان

  • Andréa S. Bonifácio
  • Cybele T. M. Vinagre
  • Nair Maria Maia de Abreu
چکیده

The energy of a simple graph G is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two graphs of the same order are said to be equienergetic if they have the same energy. Several ways to construct equienergetic non-cospectral graphs of very large size can be found in the literature. The aim of this work is to construct equienergetic non-cospectral graphs of small size. In this way, we first construct several special families of such graphs, using the product and the cartesian product of complete graphs. Afterwards, we show how one can obtain new pairs of equienergetic non-cospectral graphs from the starting ones. More specifically, we characterize the connected graphs G for which the product and the cartesian product of G and K2 are equienergetic non-cospectral graphs and we extend Balakrishnan’s result: For a non-trivial graph G, G⊗C4 and G⊗K2⊗K2 are equienergetic non-cospectral graphs, given in [R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295]. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open problems for equienergetic graphs

The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Two graphs of the same order are said to be equienergetic if their energies are equal. We point out the following two open problems for equienergetic graphs. (1) Although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...

متن کامل

New skew equienergetic oriented graphs

Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...

متن کامل

More skew-equienergetic digraphs

Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this  paper, we give some new methods to construct new skew-equienergetic digraphs.

متن کامل

The energy of a graph

The energy, E(G), of a simple graph G is defined to be the sum of the absolute values of the eigen values of G. If G is a k-regular graph on n vertices,then E(G) k+√k(n− 1)(n− k)= B2 and this bound is sharp. It is shown that for each > 0, there exist infinitely many n for each of which there exists a k-regular graph G of order n with k < n− 1 and B2 < . Two graphs with the same number of vertic...

متن کامل

Constructing cospectral graphs for the normalized Laplacian

We give a method to construct cospectral graphs for the normalized Laplacian by swapping edges between vertices in some special graphs. We also give a method to construct an arbitrarily large family of (non-bipartite) graphs which are mutually cospectral for the normalized Laplacian matrix of a graph. AMS 2010 subject classification: 05C50

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008